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putation which is offset to some extent by larger time step
sizes. Edwards and McRae [7] developed their nonlinearThe linear stability analysis of the unfactored upwind relaxation-

sweeping (URS) algorithm for 3D flow field calculations has been relaxation solver for 3D viscous flows with the mixture of
carried out and it is shown that the URS algorithm is unconditionally upwind and central differencing. The method is shown to
stable. The algorithm is independent of the global sweeping direc- be efficient, but still related to the LU factorization.tion selection. However, choosing the direction with relatively low

Employing the upwind schemes in 2D cases, implicitvariable gradient as the global sweeping direction results in a higher
unfactored relaxation algorithms demonstrate their strik-degree of stability. Three-dimensional compressible Euler equa-

tions are solved by using the implicit URS algorithm to study internal ing convergency rate due to large time steps allowed [8–
flows of a non-axisymmetric nozzle with a circular-to-rectangular 11]. For 3D cases, the achievements, however, are not
transition duct and complex shock wave structures for a 3D channel

so impressive. Candler and MacCormack [12] extendedflow. The efficiency and robustness of the URS algorithm has been
MacCormack’s 1984 implicit unfactored algorithm to 3Ddemonstrated. Q 1996 Academic Press, Inc.

and solved hypersonic flow fields using the Gauss–Seidel
line relaxation with alternating sweeps. MacCormack mod-

INTRODUCTION ified the algorithm by implementing block tridiagonal in-
versions in two directions with Gauss–Seidel relaxation in

To obtain high efficiencies for steady state 3D flow simu- the third direction to improve the robustness [13]. The
lations, implicit algorithms are preferred for their larger rapid convergency rate has been obtained by both the
time step allowed. The Beam–Warming [1] or Briley– algorithms. One disadvantage for these algorithms is the
McDonald’s [2] approximation factorization ADI scheme large computational work per time step, not because of
has made initially the most important contributions to the the vectorization difficulty, which is shown to be achievable
implicit algorithm development in the mid-1970s and has by McMaster et al. [14], but mainly because the Gauss–
been a successful method, particularly for 2D cases. For Seidel iteration for the fully implicit discretization usually
three-dimensional hyperbolic cases, however, the algo- needs more than one sweep, often two, in the sweeping
rithm employing spacial central discretization appears to direction. It is noted that two sweeps for sub- or transonic
be only conditionally stable [3]. With the appearance of flows in the global field with one or two block tridiagonal
the characteristic-based upwind schemes in the 1980s, the matrix inversions at the local planes are usually CPU time
two-factor scheme based on a lower–upper (LU) factoriza- intensive. A different unfactored 3D algorithm is devel-
tion proposed by Steger and Warming [4] and Jameson oped by Paoletti et al. [15] using the conjugate gradient
and Turkel [3] became popular as an alternative to the squared (CGS) iterative algorithm with ADI as a precondi-
ADI method to solve 3D flow fields. Even though the LU tioner. The algorithm is therefore called CGS-ADI. It uses
factorization method is stable, the time step is still limited the spatial central differencing and the artificial dissipation
due to the factorization error. Rai and Chakravarthy [5] has to be added. An efficient ADI preconditioner is neces-
suggested a Newton subiteration technique to drive the sary for CGS-ADI. Otherwise a large number of CGS
factorization error to zero at each time step, which makes iterations may be required for each time step and it would
the LU factorization methods have larger time steps than offset the advantages of a large time step. More efforts
the noniterative schemes. This idea was successfully ap- are needed to develop robust unfactored 3D algorithms
plied to 3D viscous flow fields by Simpson and Whitfield for they have theoretically the potential to obtain a rapid
[6]. However, the iterative approach needs additional com- convergency rate and to save CPU time.

In 1990, Zha and Liu [16] suggested an unfactored up-
wind relaxation-sweeping (URS) algorithm. The URS* Current address: Dept. of Mechanical and Aerospace Engineering,

Rutgers, The State University of New Jersey, Piscataway, NJ, 08855-0909. method solves the 3D Euler equations by using a Gauss–
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Seidel-like iterative method. In this method, large time where c is the ratio of specific heats, taken as c 5 1.4;
u, v, w are the velocities, and e is the total energy persteps can be used and memory requirements are modest.

In addition, it only requires one sweep in the global field unit volume.
Letand therefore the CPU time per time step is saved. In the

cited reference, although the basic idea was described,
detailed computational tests and stability analysis were P 5 F ? ix 1 G ? iy 1 H ? iz . (3)
not presented. The algorithm was successfully extended to
solve 3D Navier–Stokes equations with a CFL number up Using the Gauss theorem, the integral form of Eq. (1) is
to more than a million [17]. But the previous applications
[16, 17] were mainly for simple geometries with simple E

Q

U
t

dQ 1 E
S

P ? n dS 5 0, (4)physical phenomena. In these studies, Van Leer’s flux-
vector splitting (FVS) technique was used for its good
representation of inviscid flow fields and efficiency [9–11, where Q is the volume bounded by the surface S and n is
18], although other upwind schemes could also be used the outward pointing unit vector normal to the surface.
including the one suggested by Zha and Bilgen [20]. The equations are discretized in the physical domain on

The aim of this study is to solve more complex 3D prob- the arbitrary body-fitted grid by using the finite volume
lems using the URS algorithm with the Euler equations, method.
to present a linear stability analysis, and to demonstrate
the efficiency and robustness of the algorithm. The compu- UPWIND RELAXATION-SWEEPING (URS)
tational cases chosen are all internal flows involving mainly PROCEDURE
transonic duct flows due to the current interest in nonaxi-
symmetric exhaust nozzles. The concept of upwind relaxation-sweeping is to select

a direction with relatively small variable gradients as the
global sweeping direction and to implement the local relax-GOVERNING EQUATIONS
ation iteration on the block in the main flow direction [16].

The nondimensional form of the three-dimensional Eu- The flow field is calculated by a series of global alternating
ler equations in conservation law form and in Cartesian outward/inward sweeps in the sweeping direction with the
coordinates is local forward/backward Gauss–Seidel iteration on each

streamwise plane, one global sweep per time step. The
global sweeping is also the time marching procedure.U
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5 0, (1)
The interface flux is evaluated using Van Leer’s flux

vector splitting:
where

P 5 P1 1 P2. (5)

The detailed formulations are given in Ref. [16]. The
MUSCL-type differencing is used [11]. Assuming the
global sweeping in z-direction with increasing index k, Eq.U 5 3
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(4) is implicitly discretized as
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The pressure p is determined by the ideal-gas law,

It is noted that there is one term, P 2
n

i, j,k11/2, , discretized
explicitly. To make the solution independent of the timep 5 (g 2 1)[e 2 r(u2 1 v2 1 w2)/2], (2)
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step size, the implicit terms should be changed to delta for the next time step. As shown in Eq. (8), the RHS is
not evaluated completely by using the variables at timeform. To construct the implicit operator for the Gauss–

Seidel iteration, the delta form is only implemented for level n and contains one term, P 1
n11

i, j,k21/2 , which is available
at the completion of the iteration at the k 2 1 block.the terms with the same k index. One implicit term left is

moved to the RHS. Equation (6) is then changed to When the global iteration sweeps in the direction with the
decreasing k index, the explicit term in Eq. (6) is
P 1

n

i, j,k21/2 , instead of P 2
n

i, j,k11/2 ; the implicit term at time levelF I
Dt

Q 1 OHSdP1

dUD
k

1 SdP2

dUD
k
JG dUn11 5 RHS, (7) n 1 1 in Eq. (8) is P 2

n11

i jk11/2 , instead of P 1
n11

i jk21/2 . The RHS
of Eq. (8) is evaluated by using the third-order biased-
upwind differencing. The accuracy of a converged solution

where dUn11 5 Un11 2 Un, Dtn 5 tn11 2 tn, n is the iteration is controlled by the RHS. Therefore the algorithm pos-
index, and sesses a third-order accuracy for steady state flows.

The points of the URS algorithm that are different from
RHS 5 2 [(P 1

n

i11/2, j,k 1 P 2
n

i11/2, j,k) ? Si11/2 the three-dimensional standard Gauss–Seidel (SGS) are:

(1) URS is an implicit–explicit hybrid, instead of1 (P 1
n

i21/2, j,k 1 P 2
n

i21/2, j,k) ? Si21/2

fully implicit.
1 (P 1

n

i, j11/2,k 1 P 2
n

i, j11/2,k) ? Sj11/2
(8) (2) The RHS of the URS algorithm is calculated using

the variables at both time levels n and n 1 1, instead of1 (P 1
n

i, j21/2,k 1 P 2
n

i, j21/2,k) ? Sj21/2
only at level n.

1 (P 1
n

i, j,k11/2 1 P 2
n

i, j,k11/2) ? Sk11/2 (3) All the unknowns in a time level are solved by one
global sweep, instead of multiple sweeps.1 (P 1

n11

i, j,k21/2 1 P 2
n

i, j,k21/2) ? Sk21/2].
Such a difference brings the following advantages:

In matrix notation, Eq. (7) can be expressed as
(1) the Jacobians and dU n11 are only stored at one

block for the local Gauss–Seidel iteration. The storage
MkdU n11

k 5 RHSn,n11. (9) requirement is therefore in the order of a two-dimensional
case and is largely saved.

This equation represents the basic methodology of URS
(2) one global sweep in a time level saves CPU time

which, by using implicit–explicit hybrid discretization, in-
per time step.

verts the implicit matrices locally at a block with the same
index k and then sweeps globally block by block to solve In summary, the improvement of the URS algorithm is
the whole flow field. The RHS is evaluated by the variables that it has the high stability and convergence rate of the
at both time level n and n 1 1. unfactored Gauss–Seidel-type iterative methods while the

The line Gauss–Seidel iteration is employed to invert memory requirement and CPU time per time step is less.
the matrices at the local block k. To keep the diagonal The disadvantage of the URS algorithm is that it is not
dominance and save computational work, the first-order fully conservative for a given time level because variables
differencing is used for the implicit terms and, therefore, at time level n and n 1 1 are used at the same time to
the matrix Mk is penta-diagonal. Two sweeps are imple- evaluate the residual. Therefore, it may be inappropriate
mented at the local block k, one forward and the other to use it for unsteady problems.
backward. Implementation of two sweep iterations is an
approximation. An inner iterative approach such as that STABILITY ANALYSIS
suggested by Taylor et al. [21] to drive down the error at
the local block to a tolerable value may allow larger time A Von Neumann stability analysis is carried out for the

linear scalar model convection equation:steps. Such an inner iteration approach is, however, not
employed in this paper. After two local sweeps, the global
iteration proceeds to the next block. In this paper, the Ut 1 uUx 1 vUy 1 wUz 5 0. (10)
global sweeping starts with the inner solid wall with a
increasing k index. The variables are updated at each block This equation can be rewritten using the split characteristic
soon after the two local sweeps for the Gauss–Seidel itera- values with nonnegative and nonpositive signs as
tion are completed. When the global iteration sweeps up
to the outside solid wall, all the variables at time level Ut 1 (u1 1 u2)Ux 1 (v1 1 v2)Uy 1 (w1 1 w2)Uz 5 0,
n 1 1 are obtained and then the sweeping direction is
reversed with a decreasing k index to continue the iteration (11)



428 ZHA AND BILGEN

where e(x, y, z, t) 5 Aeiaxeibyeicz, (14)

where A is the amplitude of a single wave which is au1 5
u 1 uuu

2
$ 0, u2 5

u 2 uuu
2

# 0
function of time; a, b, and c are the wave numbers in the
x, y, and z direction within 2f length. The error function
satisfies the discretized model equation with the same formv1 5

v 1 uvu
2

$ 0, v2 5
v 2 uvu

2
# 0

for U due to the linearity of the model equation. Substitut-
ing the single term, Eq. (14), into Eq. (12) and rearranging

w1 5
w 1 uwu

2
$ 0, w2 5

w 2 uwu
2

# 0. the terms, the amplification factor is obtained,

Suppose the global sweeping is in the direction with in- g 5
An11

Ancreasing k index. Using first-order upwind differencing to
discretize the model equation, i.e., backward differencing

5 (1 2 c2eiw)/(1 1 a1 1 b1 1 c1 2 a2 2 b2 2 c2

(15)for the positive characteristic values and forward differenc-
1 a2eiuing for the negative characteristic values, we obtain

2 a1e2iu 1 b2eif 2 b1e2if 2 c1e2iw),
U n11

i, j,k(1 1 a1 1 b1 1 c1 2 a2 2 b2 2 c2)

where u 5 ah, f 5 bk, w 5 cl are the differences of the1 a2U n11
i11, j,k 2 a1U n11

i21, j,k
(12) wave phase angles of two neighbouring grid points in the

1 b2U n11
i, j11,k 2 b1U n21

i, j21,k x, y, and z directions.
From Eq. (15), we have2 c1U n11

i, j,k21 2 U n
i, j,k 1 c2U n

i, j,k11 5 0,

g2 5 [1 2 2c2 cos w 1 (c2)2]/h[1 1 (a1 2 a2)(1 2 cos u)where
3 (b1 1 b2)(1 2 cos f) 1 c1(1 2 cos w) 2 c2]2 (16)

a1 5
u1Dt

h
$ 0, a2 5

u2Dt
h

# 0 1 [(a1 1 a2) sin u 1 (b1 1 b2) sin f 1 c1 sin w]2j

by taking the limits, withb1 5
v1Dt

k
$ 0, b2 5

v2Dt
k

# 0

cos u 5 1, cos f 5 1, cos w 5 1

sin u 5 0, sin f 5 0, sin w 5 0,
c1 5

w1Dt
l

$ 0, c2 5
w2Dt

l
# 0;

h, k, and l are the grid intervals in the x, y, and z directions. the numerator of Eq. (16) reaches the maximum and the
Obviously, we have denominator reaches the minimum. Therefore, the ampli-

fication factor reaches the maximum value:
u1 1 a1 1 b1 1 c1 2 a2 2 b2 2 c2u .

(13)
ua2u 1 u2a2u 1 ub2u 1 u2b1u 1 u2c1u. g2

max 5
(1 2 c2)2

(1 2 c2)2 5 1. (17)

Thus Eq. (12) is diagonally dominant and satisfies the con-
Thus we havevergence conditions for the iterative method. It is noted

that the diagonal dominance is stronger than the fully im-
g2 # g2

max 5 1, ugu # 1. (18)plicit scheme because the explicit term does not make any
contribution to the off-diagonal elements. According to
Lax’s equivalence theorem [22], for the time marching Therefore, we conclude that, for the linear model equation,

the URS algorithm with the first-order differencing is un-problems, we also have to prove that the roundoff error
of the URS algorithm satisfies the stability condition which conditionally stable. Equations (13) and (18) still apply

when the global sweeping is in the direction of the decreas-is the necessary and sufficient condition for convergence.
Suppose the roundoff error function is E(x, y, z, t) which ing k index due to the symmetry of the model equation.

Therefore the stability is independent of the selection ofcan be expressed by a Fourier series. Since the model
equation is linear, superposition can be used and we may the global sweeping direction.

It can be seen from Eq. (15) that, if c2 R 0, Dt R y,examine the behaviour of a single term of the series. Con-
sider a single term, the amplification factor
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ugu R 0. That is, the maximum dumping occurs when
c2 R 0, Dt R y. These conditions are weaker than the
fully implicit unfactored scheme for which the maximum
dumping occurs when Dt R y. The extra condition, c2 R
0, is due to the explicitly discretized term.

uc2u to be small means that the convection speed uw2u is
small when a time step size and grid spacing are fixed.
That is, even though the URS is unconditionally stable, if
we choose the direction with the relatively low variable
gradients as the global sweeping direction, the URS can
result in a higher degree of stability. This is the theoretical
base of the URS scheme.

It should be recalled that the above conclusions are all
based on discretization using first-order differencing. In
this paper, third-order differencing is employed for the
evaluation of the RHS to obtain higher order accuracy
solutions. The advantages of using a first-order differencing
on the LHS are: (1) diagonal dominance of the coefficient

FIG. 1. The convergence histories of the calculation for the transitionmatrix is retained and, therefore, the iteration convergency
duct with the nozzle.conditions are satisfied; (2) CPU time can be saved to

solve the implicit operator since only the block tridiagonal
matrixes need to be inversed. If a higher order differencing
is used for the LHS, the diagonal dominance will be lost prevent cases with flow separation, a1 and a2 are chosen

to be less than 458 as suggested by Stevens et al. [24].and, therefore, underrelaxation must be used. Block pen-
tadiagonal matrixes must be solved for a higher order dif- Therefore with a little probability of separation, the Euler

equations may predict well the general feature of the flowferencing and, therefore, more computational work is nec-
essary. The disadvantage of the inconsistent differencing field. In the experimental study [23], the entrance flows

with and without swirl were tested. The swirl flow is consid-order for the LHS and the RHS is that the convergency
rate will be reduced, compared with the consistent discreti- ered to be able to alleviate some flow separation by im-

parting a radial component to the velocity vectors. Morezation.
importantly, they can be used to reduce the noise associ-
ated with the jet exhaust. In the experiment, the swirl flowRESULTS AND DISCUSSION
was induced by installing 12 vanes with a 208 angle incline
to the axis. Both flows with and without entrance swirlTo validate the algorithm, three cases were calculated.

Unless indicated, first-order differencing for the LHS and were calculated in this paper. To test the dependence of
the convergence rate on the grid size, 51 3 21 3 21 andthird-order differencing for the RHS were used. The con-

vergence criterion used in this paper for all cases is that 101 3 31 3 31 grid sizes were calculated. The flow with
entrance swirl is presented here, a case with a lower con-the maximum L2 norm of the RHS be reduced to ma-

chine zero. vergency rate. The maximum CFL number used is 500 for
the grid 51 3 21 3 21 and 540 for 101 3 31 3 31. SingleCase 1 is a transition duct with a nonaxisymmetric tran-

sonic nozzle. The need for innovative jet-engine exhaust precision is used and the residuals are driven down to
machine zero by using 320 iterations for the coarse gridsystems with multifunction capability is being met by vari-

ous nonaxisymmetric nozzle concepts. A transition duct is and 581 iterations for the fine grid shown in Fig. 1. It is
seen that the convergency rates are rapid. However, theyneeded to connect the axisymmetric engine to the nonaxi-

symmetric nozzle through a smooth progression of geomet- depend on the grid size and are slower for the finer grid.
The Mach number distribution along the center line is fromrically similar cross sections. Such a transition duct with a

nonaxisymmetric transonic nozzle designed and tested by subsonic to supersonic. Figure 2 presents the calculated
pressure distributions along the side and bottom wall cen-Burley et al. [23] are calculated. The characteristic geomet-

ric parameters for the transition duct are: L/D 5 1.00, ter lines, compared with the experiments with and without
entrance swirl flow. The result with no swirl flow in Figs.a1 5 42.78, a2 5 25.98, Acs 5 20.1408 in2, where L/D is

ratio of the transition duct length to the entrance diameter, 2a and b agrees very well with the experiment. The compu-
tational result almost goes through the experimentala1 is the maximum slope angle of transition along the

sidewall, a2 is the maximum slope angle of transition along points. The pressure has a sharp rise at the throat due to
the short compression right after the sonic line and goesthe top or bottom walls, Acs is the cross-sectional area. To
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transition duct is not uniformly swirled. We also assumed
that the swirl at the inlet of the duct is 208. For the experi-
ment, the swirl vanes have a distance from the duct inlet.
The swirl flow may not be kept exactly at 208 when it
approaches the inlet of the duct due to the influence of
the wall boundary layers and the wakes. In fact, our compu-
tational experiments showed that the inlet boundary condi-
tion had quite a strong influence on the results. Despite
such approximations, the computational result generally
agrees well with the experiment as shown in Fig. 2 with
the maximum error 3.6%.

FIG. 2. Pressure distributions of the transition duct and the nozzle.
Lines show the calculations and solid circles the experimental results.

down soon after the throat due to the supersonic accelera-
tion. For the case with entrance swirl flow, experimental
data are only avilable for the transition duct shown in Figs.
2c and d. It is seen that the pressure values are higher than
the experimental data near the end of the transition duct.
The main reason may be that it is not easy to simulate
the entrance swirl flow accurately. We assumed that the
entrance flow had a uniform swirl angle at the entrance
plane. The experimental swirl device produces wakes be- FIG. 3. Pressure distributions of the nozzle. Lines show the calcula-

tions and solid circles the experimental results.hind the vanes and vane shaft and the flow entering the
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direction induced by the swirl vanes. Such a flow picture
retains for a short distance. With the flow going in and the
cross section changing to elliptic, the circulation is split
and is not symmetric anymore. There two points, one which
is on the upper-right border and the other which is symmet-
rically on the lower left border, divide the transverse flow
into two streams going to left and right. A vortex is kept
around the center of the section. Such a cross flow field
structure is maintained along the nozzle from the subsonic
part to the supersonic part until the exit of the nozzle. The
flow field near the horizontal axis plane has tangential
velocity components and the velocity magnitudes are
higher than those without entrance swirl. It is what the
designers want to keep the flow attached on the side walls,
which may have large divergence angles. This may be
mainly attributed to the entrance swirl flow. The separation
can alter the cooling film at some places and cause cooling
problems. There is no shock wave in this flow although it

FIG. 4. The convergency history of the transonic nozzle. is transonic.
Case 2 is only a nonaxisymmetric transonic nozzle with

no transition duct, which is chosen for a preliminary test
of the flow with shock waves. The flow generally is two-It is interesting to investigate the transverse flow caused
dimensional because of the rectangular section. Obliqueby the entrance swirl flow. When there is no entrance
shock waves exist after the throat in both the computa-swirl, the cross flow is completely produced by the three-
tional and experimental flow fields. The shock waves aredimensional geometry and is symmetric with respect to
weak because the Mach number is only slightly greatertwo major axis planes. There is no vortex in the flow. When
than the one after the throat. The two shock waves ex-there is entrance swirl flow, the cross flow circulates in one
tending from the lower and upper wall intersect at the
center line of the nozzle and then reach the wall of the
other side. After approaching the wall, the oblique shock
waves reflect. These reflections intersect and reflect again
until the flow approaches the exit of the nozzle. The inten-
sity of the shock waves becomes weaker with repeated
intersections and reflections. The pressure distributions in
Fig. 3 show this phenomenon quantiatively at various loca-
tions. Figs. 3a, b, c are at the bottom wall with different
locations from the center line (Z/L 5 0.) to the one near
the side wall (Z/L 5 0.875). Figure 3d is the pressure
distribution along the side wall center line. Most of the
computational points agree very well with the experiment
[25] within 2% deviation, except for the location at the first
shock reflection. The computational shock reflection is not
strong enough and the maximum error is there with the
value up to 18%. Such a large deviation is believed to be
because of the inviscid Euler solution which ignores the
shock wave/turbulent boundary layer interaction. The
maximum CFL number used for this case was 130. Figure
4 shows the convergency history which reaches machine
zero rapidly.

Case 3 is a three-dimensional channel designed by Benay
et al. [26] for an experimental study. In the experiment
made at ONERA, this channel yielded a complex 3D flow
field produced by the shock wave/boundary layer interac-FIG. 5. The calculated Mach number contours of the channel on the

wall; Pe/Pt 5 0.545. tion. The Euler model used in this paper is not appropriate
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ies. It is seen that the convergency rate with the first-order
on the LHS and the third-order on the RHS is slower than
with first-order differencing used on both sides. There are
two reasons for this outcome. First, the inconsistent differ-
encing order used for the LHS and the RHS will reduce the
convergency rate, as mentioned in the section on stability
analysis. Second, when the third order is used for the RHS,
the numerical diffusion is less and the shock waves are
sharper than those captured by using the first-order differ-
encing. The crisp shock wave profiles make the conver-
gence more difficult than by using the first-order differenc-
ing. The second reason for the slower convergency rate is
considered to be more important. It is interesting to note
from Fig. 6 that most of the iterations are in the high
residual level and are used to form the shock waves. After
overcoming the large residuals from the shock waves, they
go down very sharply to machine zero and never go up
again. The CFL number for this case is largely reduced,
compared with the previous two cases. With the first-order

FIG. 6. Convergence histories of the 3D channel. differencing on the RHS, the maximum CFL number is
32, with the third-order on the RHS it is 24.

Even though the inviscid solution of case 3 has large
quantitative deviation from the experimental results, theto capture the accurate physical solution. However, be-

cause of the complex shock wave structure, the computa- efficiency and robustness of the URS algorithm still has
been demonstrated for this case.tional convergence is usually difficult and the problem rep-

resents a good case to test the convergence behavior and
robustness of the URS algorithm. CONCLUSIONS

The channel has three flat walls and a humped lower
The linear stability analysis shows that the unfactoredwall. The upstream part of the hump is a ramp, inclined

upwind relaxation-sweeping algorithm is unconditionallyapproximately at 78 from the horizontal. This ramp is fol-
stable. The algorithm is independent of the global sweepinglowed by convex circular surfaces of 100 and 180 mm radius
direction selection. Further, by choosing the direction withdefined to ensure slope continuity everywhere. The angle
relatively low variable gradient as the global sweeping di-formed by the hump crest and line and the channel axis
rection, the algorithm can have a higher degree of stability.equals 608. The maximum height of the hump is 20 mm
The three-dimensional compressible Euler equations areand the channel section is 120 mm wide and 100 mm high
solved by the URS algorithm to study the internal flowsat the inlet. Figure 5 shows the Mach number contours on
of non-axisymmetric nozzles with a circular-to-rectangularthe walls corresponding to a dimensionless back pressure
transition duct. The cases with and without entrance swirlof 0.545, defined as the ratio of the back pressure to the
flow were calculated. The results agree well with the experi-total pressure. This value is take from Cambier and
ments. The computational experiments show that the URSEscande [27] who solved the Reynolds averaged Navier–
algorithm is grid-size dependent. A 3D channel with com-Stokes equations and obtained qualitative agreement with
plex shock wave structures also has been calculated. Thethe experiment. The transverse shock location is not nor-
results show that the URS algorithm is efficient and robust.mal to the axis of the channel. Near the right side wall,

the oblique shock is reflected on the upper wall and then
on the bottom wall. Across the channel, two shock waves ACKNOWLEDGMENTS
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